尊敬的顾客

感谢您使用本公司生产的产品。在初次使用该仪器前,请您详细地阅读使用说明书,将可帮助您正确使用该仪器。

我们的宗旨是不断地改进和完善公司的产品,因此您所使用的仪器可能与使用说明书有少许差别。若有改动,我们不一定能通知到您,敬请谅解!如有疑问,请与公司售后服务部联络,我们定会满足您的要求。

由于输入输出端子、测试柱等均有可能带电压,您在插拔测试线、电源插座时,会产生电火花,小心电击,避免触电危险,注意人身安全!

◆ 慎重保证

本公司生产的产品,自发货之日起三个月内,如产品出现缺陷,实行包换。一年(包括一年)内如产品出现缺陷,实行免费维修。一年以上如产品出现缺陷,实行有偿终身维修。

◆ 安全要求

请阅读下列安全注意事项,以免人身伤害,并防止本产品或与其相连接的任何其它产品受到损坏。为了避免可能发生的危险,本产品只可在规定的范围内使用。

只有合格的技术人员才可执行维修。

--防止火灾或人身伤害

使用适当的电源线。只可使用本产品专用、并且符合本产品规格的电源线。

正确地连接和断开。当测试导线与带电端子连接时,请勿随意连接或断开测试导线。

产品接地。本产品除通过电源线接地导线接地外,产品外壳的接地柱必须接地。为了防止电击,接地导体必须与地面相连。在与本产品输入或输出终端连接前,应确保本产品已正确接地。

注意所有终端的额定值。为了防止火灾或电击危险,请注意本产品的所有额定值和标记。在对本产品进行连接之前,请阅读本产品使用说明书,以便进一步了解有关额定值的信息。

请勿在无仪器盖板时操作。如盖板或面板已卸下,请勿操作本产品

使用适当的保险丝。只可使用符合本产品规定类型和额定值的保险丝。

避免接触裸露电路和带电金属。产品有电时,请勿触摸裸露的接点和部位。

在有可疑的故障时,请勿操作。如怀疑本产品有损坏,请本公司维修人员进行检查,切勿继续操作。

请勿在潮湿环境下操作。

请勿在易爆环境中操作。

保持产品表面清洁和干燥。

一安全术语

警告: 警告字句指出可能造成人身伤亡的状况或做法。

小心: 小心字句指出可能造成本产品或其它财产损坏的状况或做法。

目录

	、1.1 500KV及以下GIS 外施交流耐压试验, 间隔数量不少于28个	5
	. 1.2 试验电压750KV以内GIS类(含GIL、 HGIS、 GIS母线等)、互感器、	
三、	2.1.1电气部分整体参数	7
四、	、外形尺寸:	9
五、	、2.2.8液压系统简介:	.32
六、	、结构保护	. 45

1.1 500KV及以下GIS 外施交流耐压试验,间隔数量不少于28个

最高试验电压: 750kv

电抗器参数:

额定电压: 750kv 电感量: 650H 【按740kv设计,可有效提高负载能力】

额定电流: 6A 额定频率: 30HZ, 工作范围30~300HZ

负载电容量计算:

500KV GIS现场交流耐压, 最高试验740 KV,

按谐振频率30HZ代入计算,

$$Cx = \frac{10^{12}}{4 \times \pi^2 \times 30^2 \times 650} \, pF \approx 43300 pF$$

试验间隔数量计算:

分压器电容量约1000PF, 500KVGIS间隔电容量约 1000~1500PF/间隔, 试验间隔数量(负载能力)计算如下:

$$n = \frac{43200 - 1000pF}{1000 \sim 1500pF} \approx 28 \sim 42 \ (\uparrow)$$

1.2 试验电压750KV以内GIS类 (含GIL、 HGIS、 GIS母线等) 、互感器、 母线、 套管、 绝缘子等电气设备的外施交流耐压试验

参照1.1计算可知,最高试验电压750kv时,

本项目电抗器负载能力不小于43300PF (43.3 nF)

GIS母线或GIL耐压试验长度计算:

去除分压器固定电容量1000PF, 各电压等级GIS母线或 GIL单位长度电容量约为40~80PF/m,则试验长度约为:

$$L = \frac{43300 - 1000pF}{40 \sim 80pF/m} \approx 520 \sim 1050 \text{ m}$$

2.1电气部分

2.1.1电气部分整体参数

(1)额定最大试验容量: 4800KV A/k var

(2)试验电压: 0~750kv

(3)试验电流: 0~6A

(4)试验频率: 30~300HZ

(5)绝缘水平: I.1un AC880kv (工频) , Imin

(6)试验电压波形:正弦波,波形畸变率≤0.5%

(7)负载电容量范围: 0~43300PF

(8)系统本体谐振频率:约200HZ

(9)高压测量误差: ≤1%

(10)高压不稳定度: ≤3%

(11)高压显示分辨力: 0.1kv

(12)输出频率误差: ≤0.01HZ

(13)输出频率不稳定度: ≤0.01HZ

(14)电压调节步进值: 1%/0.1%/0.01%

(15)频率调节步进值: IHZ/0.1HZ/0.01HZ

(16)品质因数 (Q值): 不小于80 (不计被试品、高压引线部件等损耗)

(17)工作电源: AC380V±10%, 三相 50/60HZ

(18) 变频控制电源, 励磁变压器: 200KW及200KVA, 励磁变输出 10KV X2, 1.5倍抽头, 输出电压10KV, 20KV, 30KV

2.1电气部分

DL / T 849.6 - 2016

表 4 油浸式励磁变压器和电抗器各部分温升限值

变压器部位	温升限值 K	测量方法
绕组	65	电阻法
铁心表面	使相接触的绝缘物不受损伤的温升值	温度计法
项层油	55	温度计法

DL / T 849.6 — 2016

5.8.10 绝缘水平

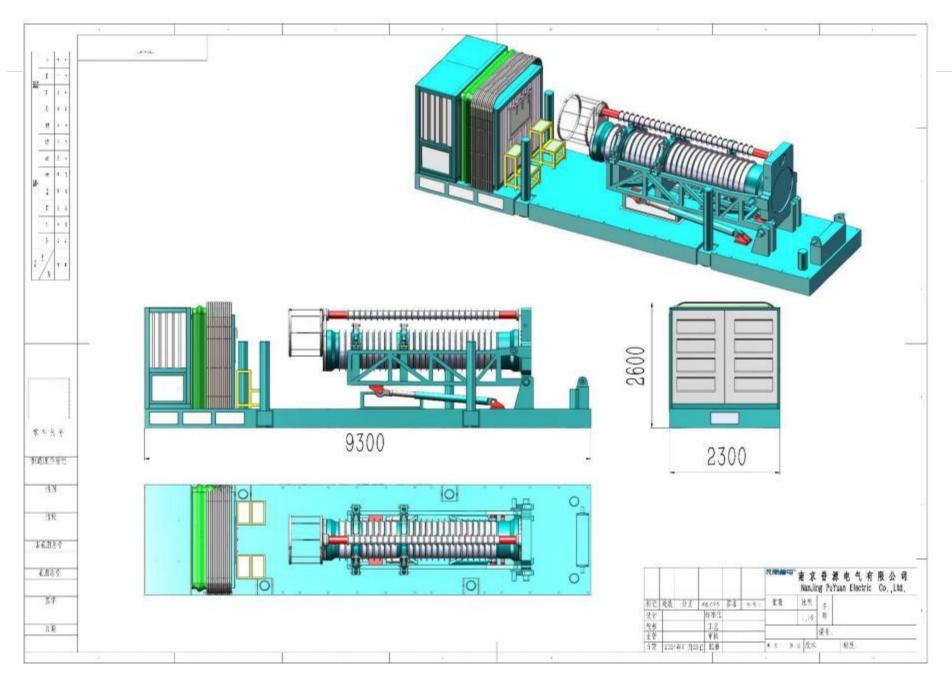
铁壳式电抗器的绝缘电阻和绝缘水平应满足 5.4.6 的规定。交流试验电压频率宜高于电抗器的额定 频率,但交流耐压时耐压时间不按试验频率换算。

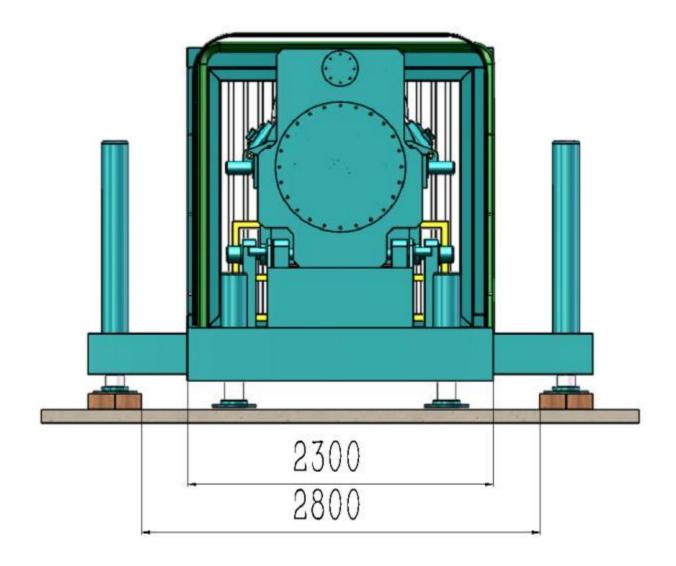
由多台电抗器组成的电抗器叠柱,单节电抗器的试验电压按式(2)计算:

5.8.11 损耗

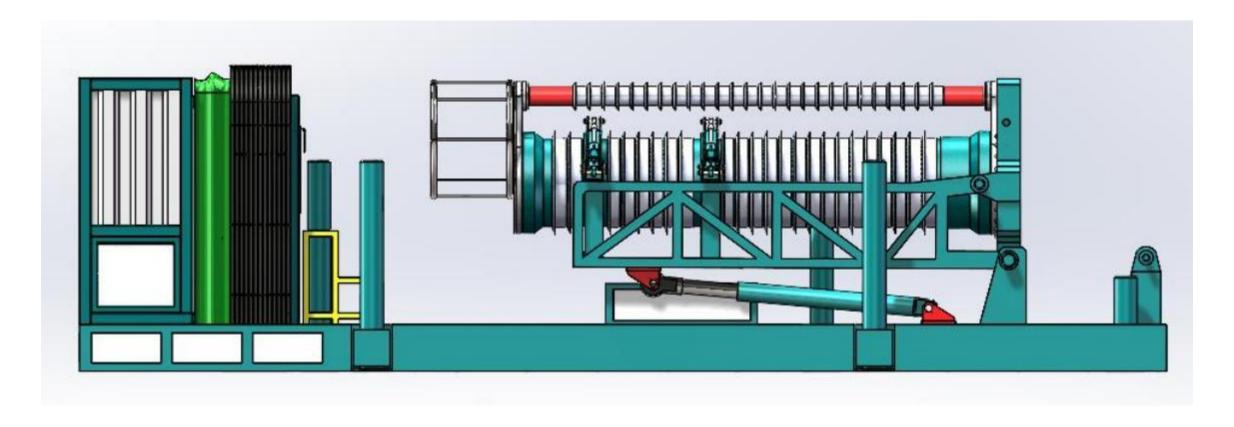
在电抗器的额定频率下,其损耗不应影响整套谐振试验装置的品质因数。

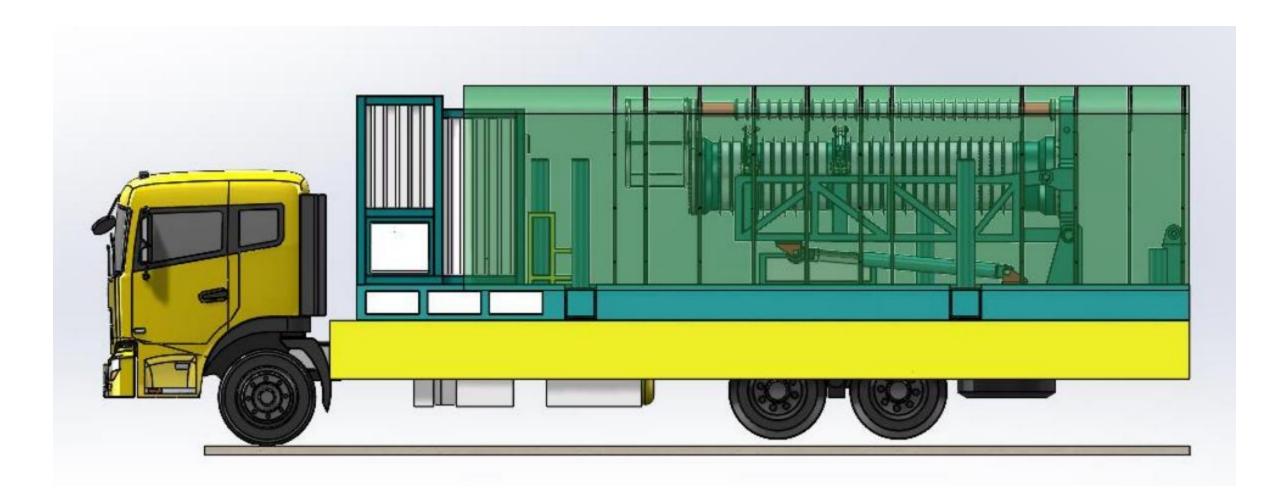
5.8.12 工作制和温升

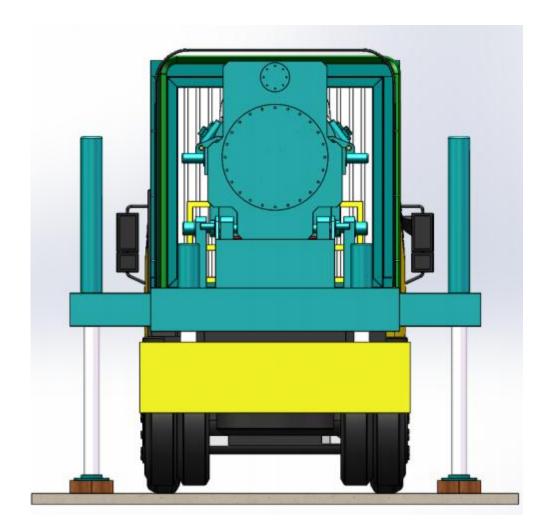

在额定频率的额定电流下,运行时间应满足整套试验装置的要求。干式电抗器的温升不应超过表 3 的规定,油浸式电抗器的温升不应超过表 4 的规定。

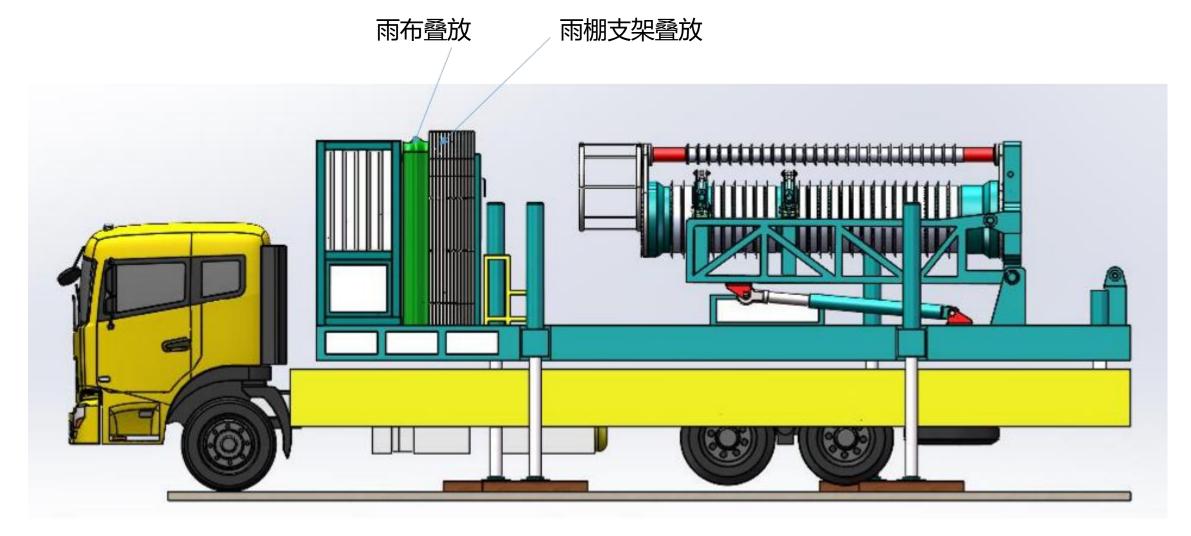


外形尺寸:

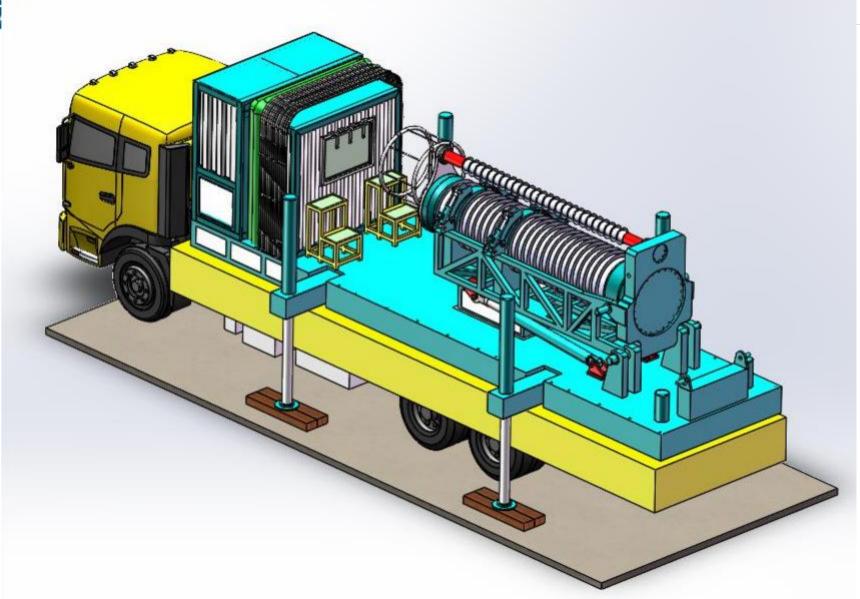

长宽高: 9300*2300*2600

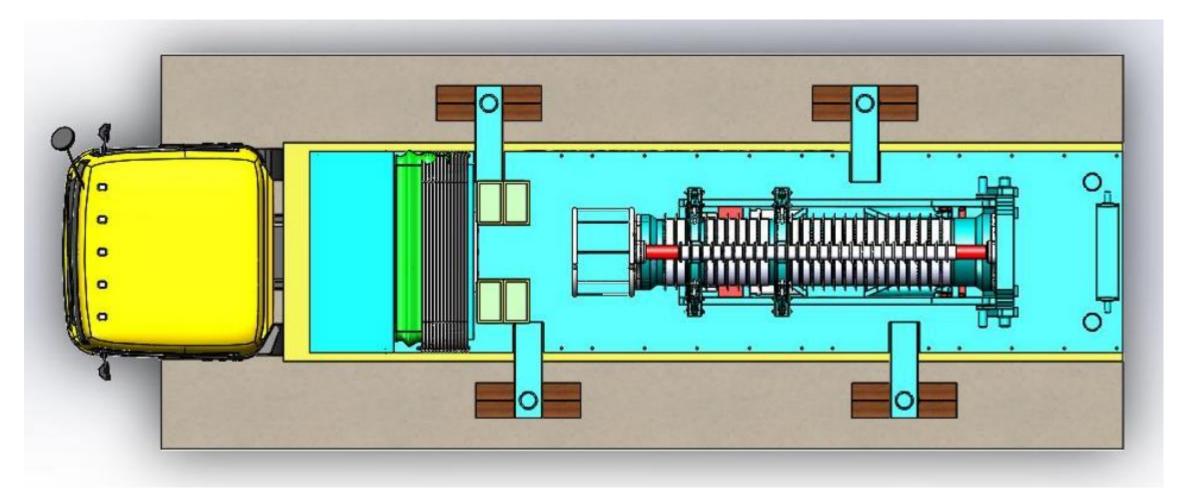

预估16~17.5吨

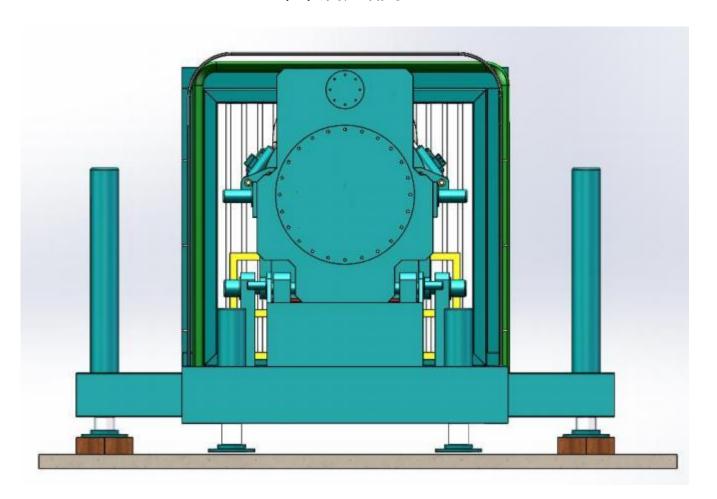

整套平台,固定车厢部分,采用台阶式样式,方便摆放护栏及雨布。

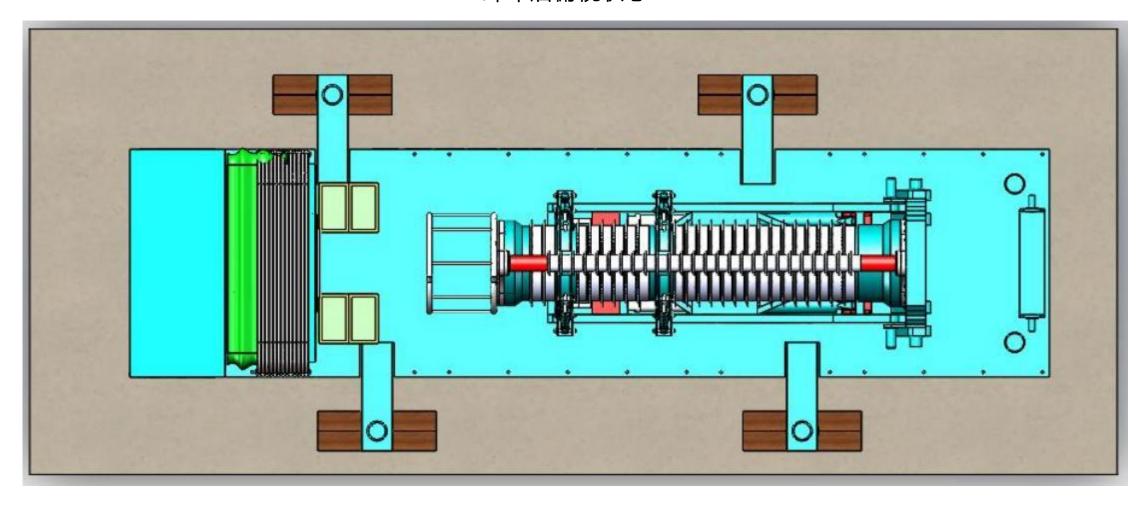


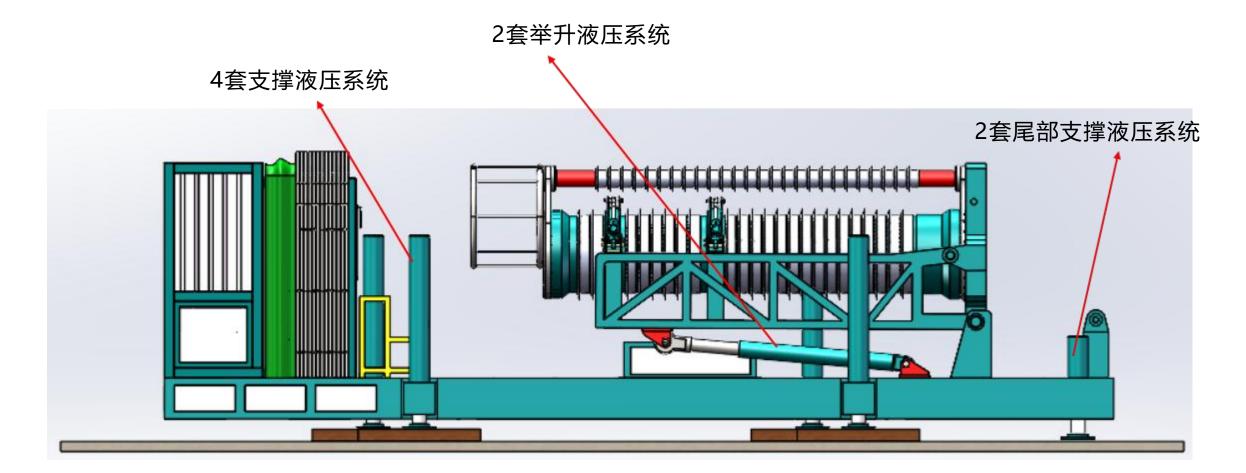
车辆运输外观示意图

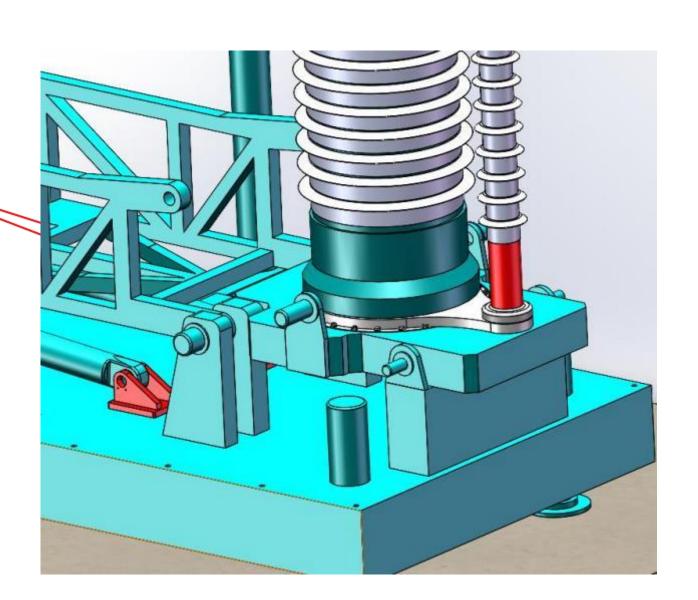


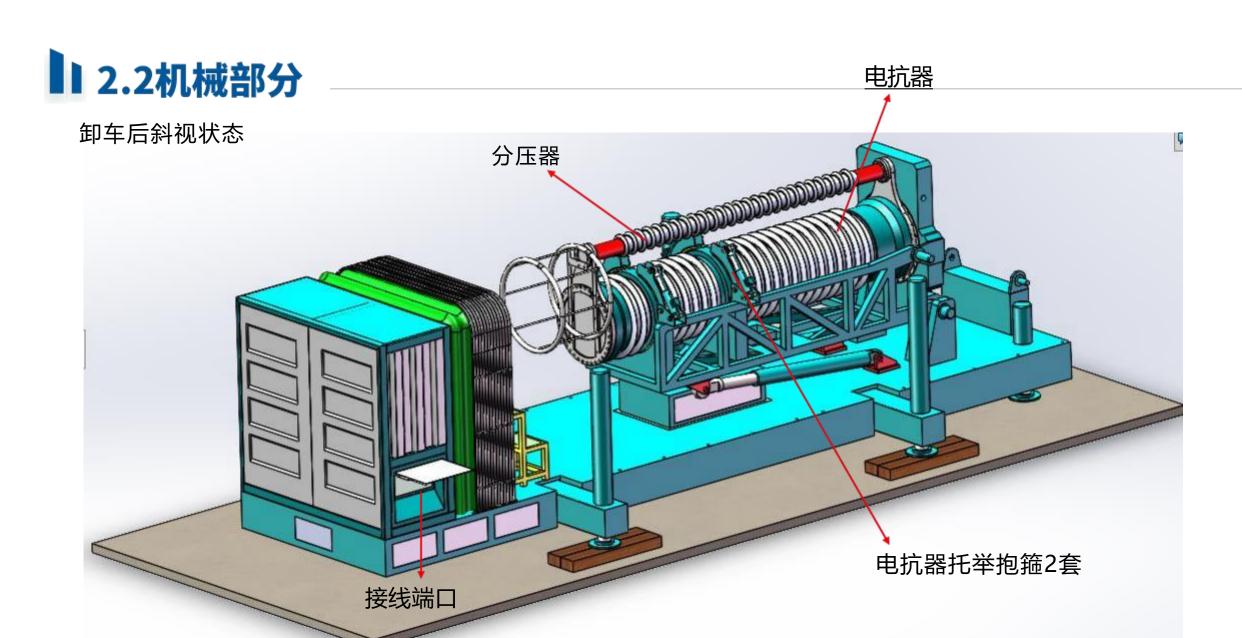

试验平台卸车状态

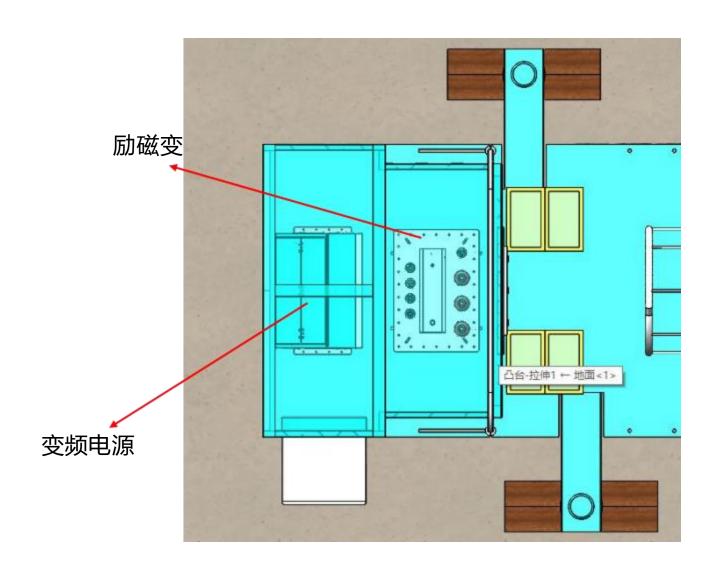

2.2机械


(俯视图)

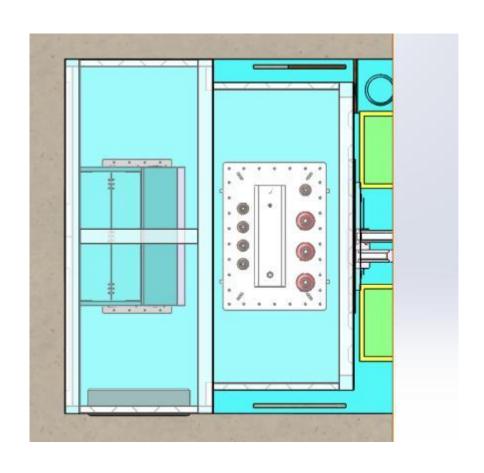

卸车后尾部状态

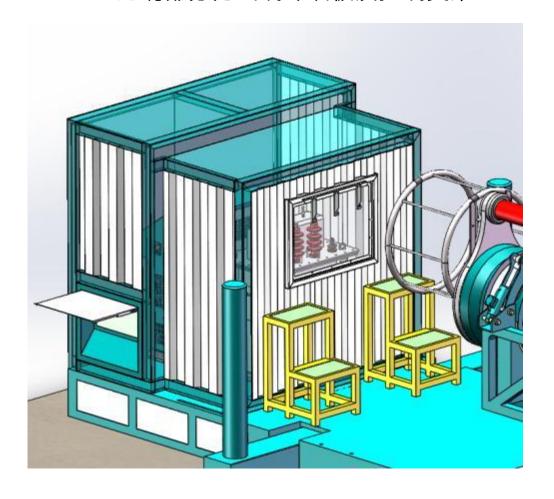

卸车后俯视状态

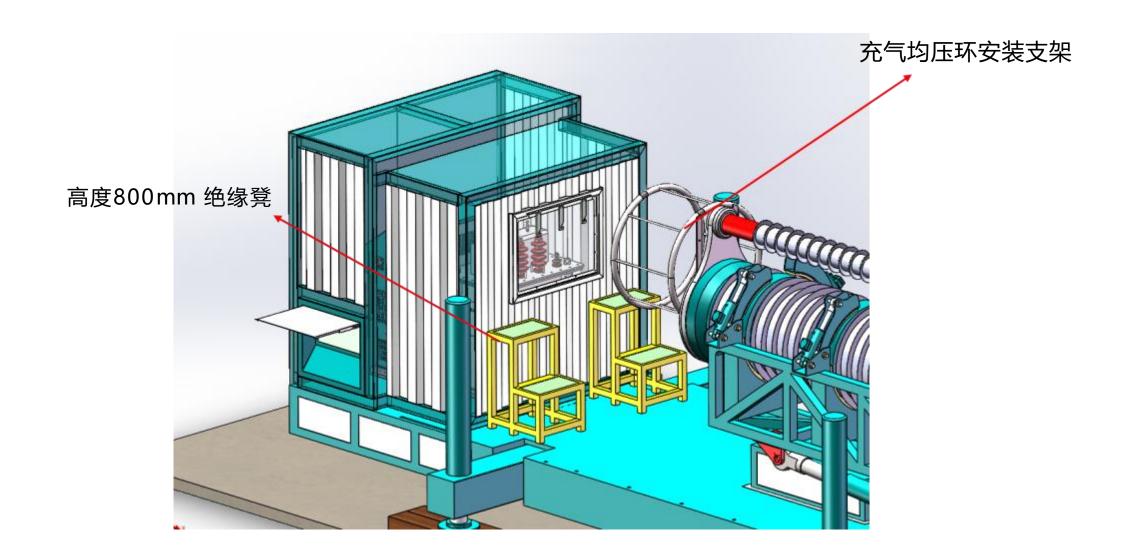



卸车后正视状态

4套旋转及固定液压系统

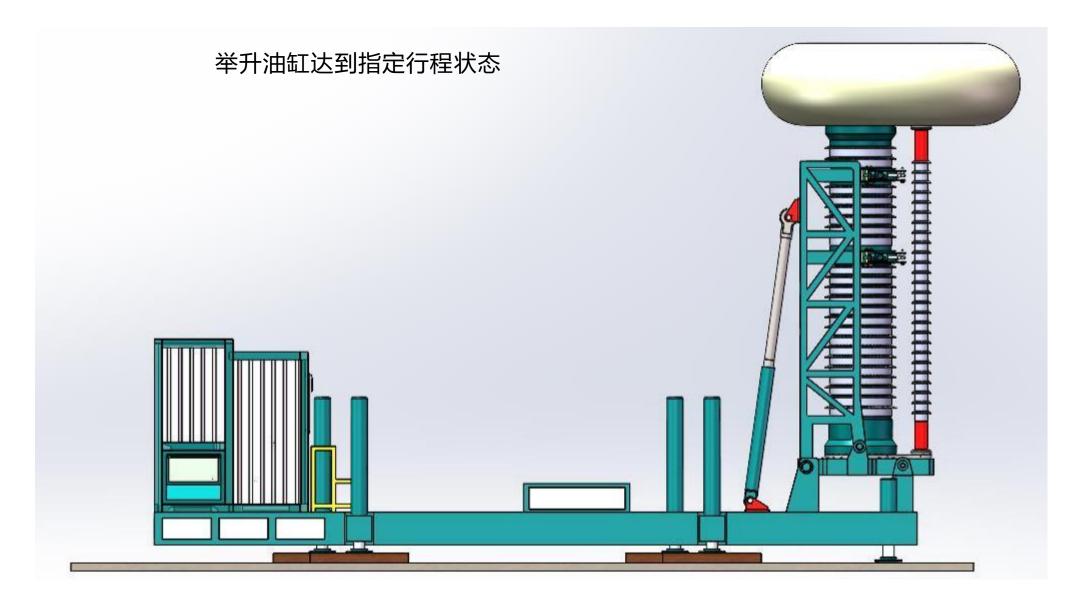


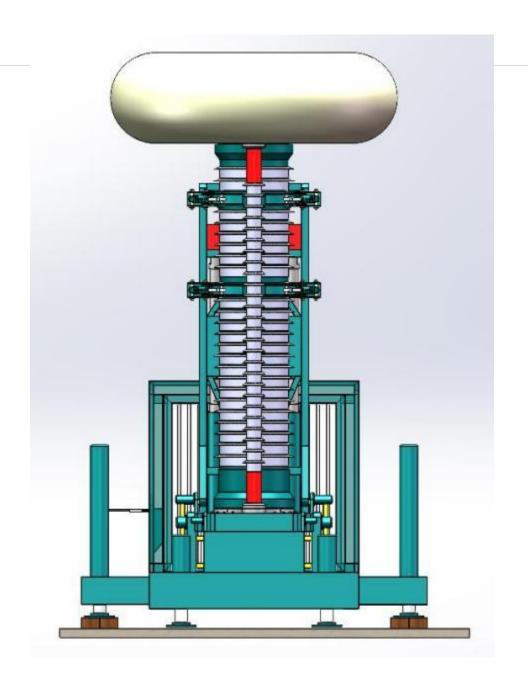




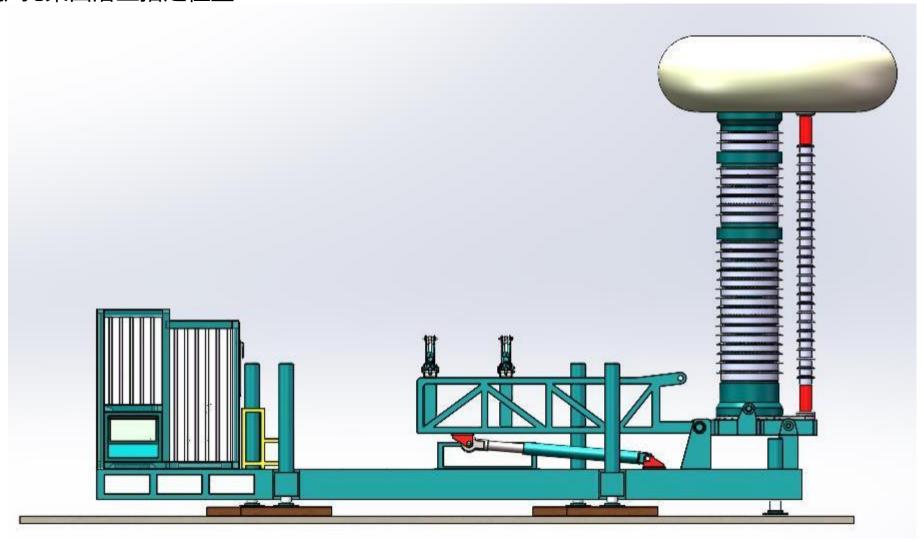
固定车厢俯视图及后视图

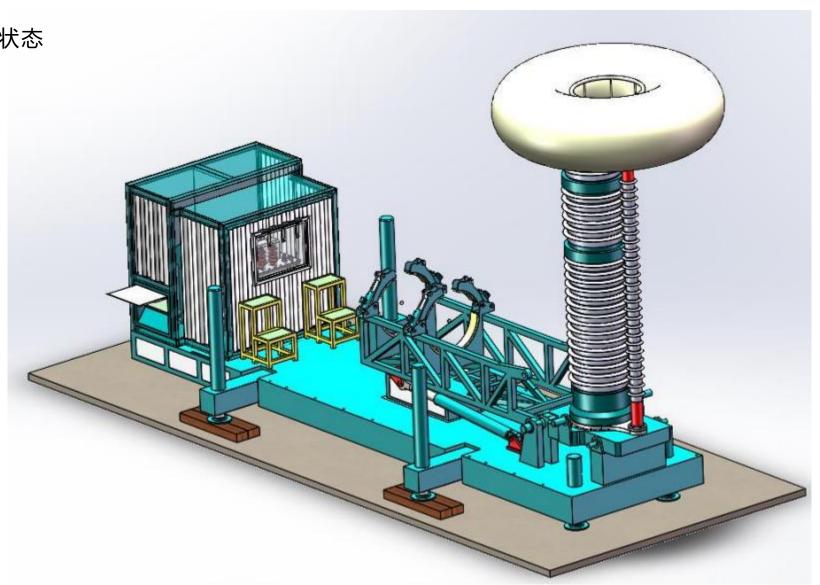



透明部分为出线环氧板及挂线支架

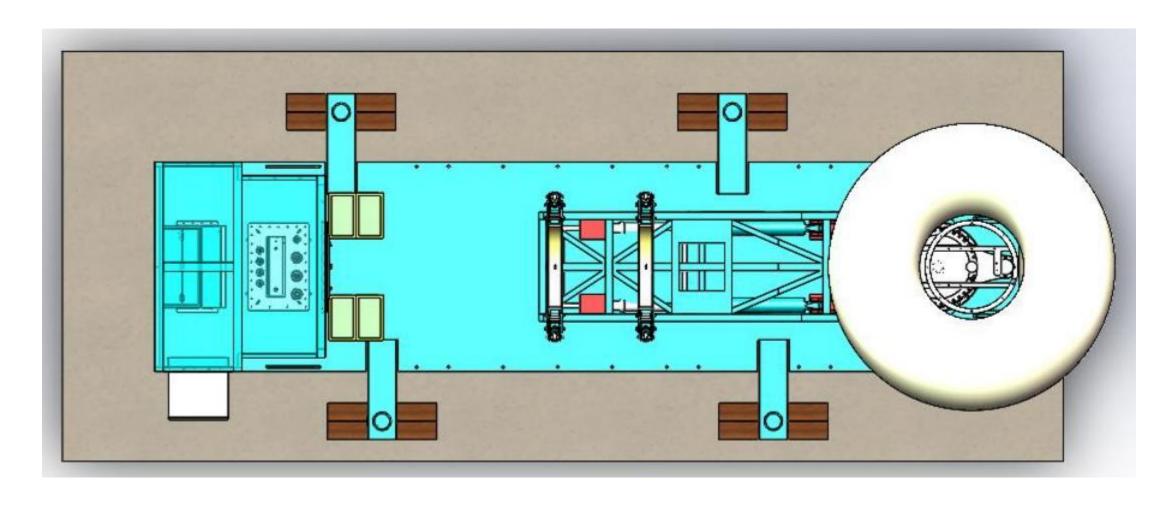


充气均压环充气后状态




举升油缸达到指定行程状态 后视图


电抗器保护托架回落至指定位置


举升油缸达到指定行程状态

进入试验状态 (斜视图)

进入试验状态 (俯视图)

2.2.8液压系统简介:

1) 系统参数、指标设计

工作低压: 10 Mpa

工作高压: 20 Mpa

最大流量: 90 L/min

油箱容积: 150 L (暂估)

液压油: 10#航空液压油(地面用)

工作温度: -40℃~45℃

储存温度: -55℃~55℃

海拔高度: 4500米以下

2) 系统组成、功能设计

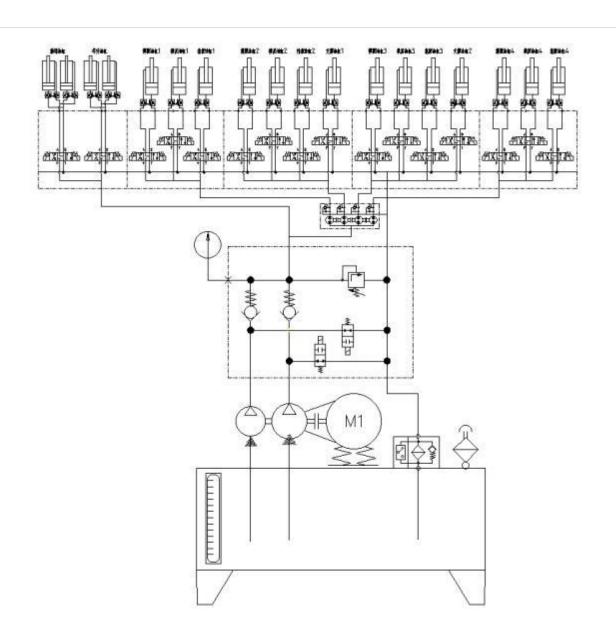
系统由平台结构、托架结构、液压系统、伺服系统等组成。

产品组成表

3) 工作原理

液压站内的电机泵组为系统提供油源,伺服控制系统发出指令,通过控制电磁阀得失电关系,使得撑腿油缸、横展油缸、举升油缸等执行机构等实现设定功能。执行机构运行到位通过相对应的接近开关传递信号,PLC收到反馈信号,执行后续动作或停止。

系统液压站内设计大小泵供油,根据 需要可同时或独立工作。

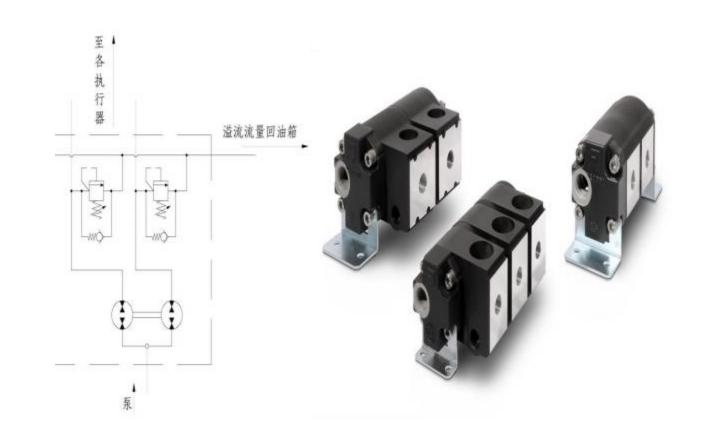

平台支撑工作原理

车辆静止后4条撑腿油缸圈行程伸出(1500mm,目视法确认油缸全行程),车辆驶离后两条支撑油缸圈行程伸出(200mm,伺服系统设计时间判断)。支撑油缸到位后4条撑腿油缸同时回收,4条油缸同时接触地面受力后停止。

3.2耐压器运行工作原理

车辆支撑后插销油缸解锁(接近开关 判断),举升油缸伸出将托架急耐压器运 送至垂直状态(接近开关判断),抱箍解 锁(接近开关判断),举升油缸将托架收 回至平台(接近开关判断)

4) 原理图

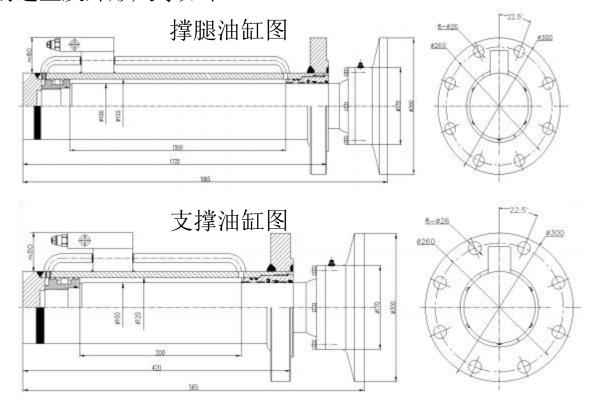

■ 2.2机械部分

5) 同步功能设计

系统的液压撑腿、液压油缸运行同步由和一分四的齿轮式同步分流马达控制。

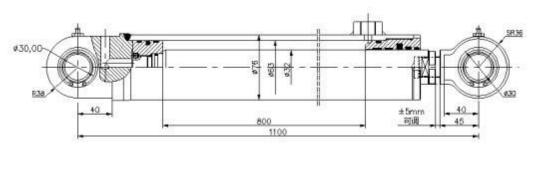
齿轮式液压同步分流马达(液压同步马达)是由一系列相互耦合的齿轮泵或齿轮马达组成。每一片具有泵或马达的功能。整个元件有一个共同的进油通道和各自独立的出油口。高压油由油泵提供给分流马达,分流马达只对流入其进油通道的液压油起分配作用,分流马达每片的尺寸相同,则进油口的高压油将被分流马达等量分流。

作为分流阀升级换代产品,液压同步马达同步精度更精确(液压同步马达1²2%,分流阀3~4%),效率更高,对油品粘度不敏感,抗污染能力强。特别是在实现多路分流方面,液压同步马达有分流阀不可比拟的优势。

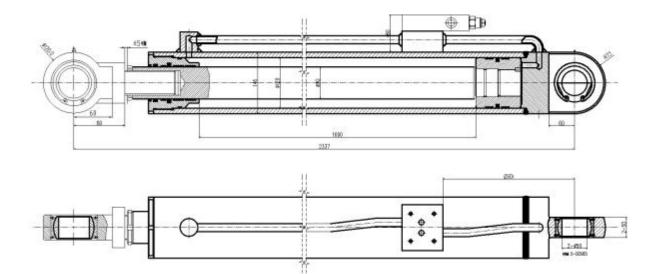

6) 执行元件设计选型

液压油缸设计选型

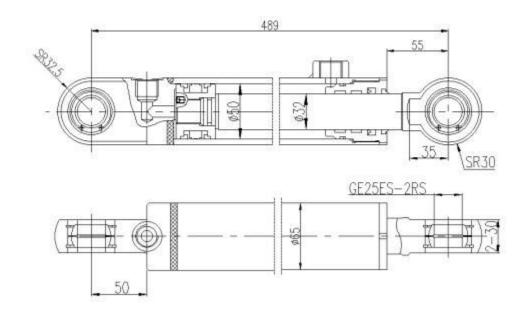
液压油缸参数


油缸类型	缸径/杆径-行程 (mm)	承载能力 (t)	单行程时间 ≥ (s)	数量
举升油缸	120/90-1690	22.6	180	2
撑腿油缸	120/100 1500	11.3	180	4
支撑油缸	120/100-200	11.3	20	2
横展油缸	63/32-800	3.1	30	4
抱箍油缸	50/32-200	1.9	10	2
插销油缸	50/25-90	1.9	5	2

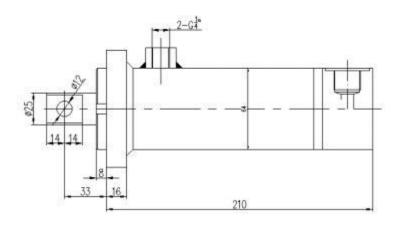
依据技术要求,产品设计经验及技术延续性,油缸的选型及外形尺寸如下:

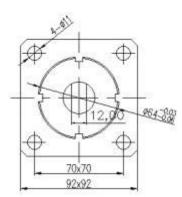


举升油缸图

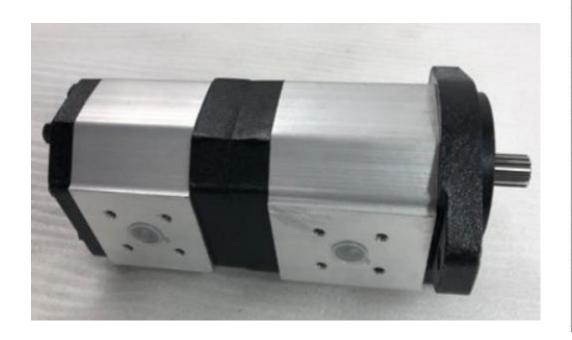


横展油缸图




■ 2.2机械部分

抱箍油缸图



插销油缸图

7) 液压泵设计选型 依据技术要求,产品设计经验及技术 延续性,液压泵选用高压双联齿轮泵。

技术参数

泵类型	重型、铝合金壳体、外啮合齿轮泵
安装方式	SAE矩形法兰、螺栓通孔、
	特殊要求可订货
油口	SAE及公制对开法兰、或其它油口形式
轴伸类型	SAE花键,平键,锥型轴,或带扁平尾 锲的圆柱轴,特殊要求可订货
转速	500-4000 rpm, 详见参数表
理论排量	详见参数表
驱动	推荐采用挠性联轴器直接驱动
轴向/径向负载	要求承受轴向或径向负载时,必须确认
	带有外置轴承
进口压力	工作范围: 0.8~2 bar (绝对压力)
	最低进口压力: 0.5 bar (绝对压力,短时间无负载),建议进行查询
出口压力	详见参数表
液压液	H-LP DIN 51525 液压油
油液温度	工作温度范围: -15°C ~ +80°C
sprinting.	最高的容许工作压力取决于油液温度.
	转速≤1500 rpm 时的冷起动温度为:
	-20°C ~ -15°C

油液粘度	工作粘度范围: 8~1000 mm²/s, 最高的容许工作压力取决于粘度,工 作压力 P≤10 bar 和转速 n≤1500 rpm时,冷起动的粘度范围为: 1000~2000 mm²/s
环境温度	-40°C ~ +70°C
过滤要求	应符合 ISO 4406 16/13级
流动速度	详见参数表
旋转方向 (向传动轴方向看)	順时针,逆时针或双向 注意! 泵只能按指示的方向旋转。
多联泵	可有双联和三联配置供货。最大轴负载必须按本样本中的额定轴负载表的规定予以确认。最大负载按各泵联同时加载时,各泵联扭矩值相加之和予以确定。
单独或共用进口	单独进口配置: - 每个齿轮壳体均有各自的进、出口共用进口配置; - 两个齿轮泵联共用一个公共进口, 位于前端齿轮壳体上

8) 电机设计选型 依据技术要求,产品设计经验及技术 延续性,电机选用低温系列电机。

essent.			5501637		效率 Efficiency IEC 60034-2-1; 2007		功率	电流Currer		转矩	Toro	ue	转动惯量 Moment		声压等级 Sound
输出 Output kW		产品代码 Product code	转速 Speed r/min	Full構造 load 100%	t 3/4负t load 75%	数1/2负载 load 50%		I _N	I _n	T _N	T _I	$\frac{T_b}{T_N}$	of inertia J = 1/4 GD ² kgm ²	重量 Weight kg	pressure level L _{PA} dB
1500 r	min = 4 poles	380 V 50 Hz	i veze e e e e e e e e e e e e e e e e e	111000000	e accessor	1337410-04	ACOMO PORC	CE	NELE	C-设计	desi	gn	200210	10000	Oran
0.25	M2BAX 71 MA	3GBA 072 310-**CCN	1404	67.0	64.1	58.6	0.77	0.74	4.2	1,68	1.9	2.5	0.00059	9	49
0.37	M2BAX 71 MB	3GBA 072 320-**CCN	1393	69.5	68,5	65.2	0.81	1.00	4.2	2.52	1.8	2.3	0.00076	10	46
0.55	M2BAX 80 MA	3GBA 082 310-**CCN	1402	73,5	72.8	70.1	0.80	1,42	4.8	3,70	2.1	2.6	0.00156	13	54
0.75	M2BAX 80 MB	3GBA 082 320-**CCN	1438	79.6	79.5	76.5	0.75	1.91	6.4	4.97	3.4	3.5	0.00247	17	53
1.1	M2BAX 90 SA	3GBA 092 110-**CCN	1440	81.4	80.4	77.3	0.77	2.67	6.3	7.35	3.5	3.8	0.00372	21	51
1.5	M2BAX 90 LA	3GBA 092 510-**CCN	1421	82.8	81.9	80,0	0.78	3,53	6.6	10.0	3,3	3,8	0,00462	23	55
2.2	M2BAX 100 LA	3GBA 102 510-**CCN	1437	84.3	84.1	82.9	0.82	4,84	6.7	14.5	2.9	3.4	0.00759	31	55
3	M2BAX 100 LB	3GBA 102 520-**CCN	1437	85.5	85.4	84.2	0.83	6.42	7.3	19.8	3.2	3,8	0.00939	35	58
4	M2BAX 112 MA	3GBA 112 310-**CCN	1433	86.6	87.0	86.1	0.83	8,46	7.1	26.5	3.6	3.9	0,01195	41	56
5,5	M2BAX 132 SA	3GBA 132 110-**CCN	1451	87.7	87.8	87.2	0.81	11,8	6.4	36.0	2,2	3.0	0.02570	57	66
7.5	M2BAX 132 MA	3GBA 132 310-**CCN	1453	88.7	89.0	88.6	0.81	15.9	6.8	49.1	2.3	3.2	0.03195	68	66
11	M2BAX 160 MLA	3GBA 162 410-**CCN	1461	89.8	90.2	90.1	0.82	22.7	7	71.5	2.9	2.9	0.078	110	67
15	M2BAX 160 MLB	3GBA 162 420-**CCN	1463	90.6	91.1	91	0.84	29.9	7.4	97.7	2.9	3,3	0.100	125	66
18.5	M2BAX 180 MLA	3GBA 182 410-**CCN	1467	91.2	91.5	91.2	0.83	37.1	7.9	120.8	3.3	3.7	0.120	155	65
22	M2BAX 180 MLB	3GBA 182 420-**CCN	1468	91.6	91.7	91,1	0.82	44.5	8.7	143	3.7	4.1	0.139	168	66
30	M2BAX 200 MLA	3GBA 202 410-**CCN	1471	92.3	92.8	92.9	0.84	58.8	6.5	193,6	2.7	2.8	0.236	222	68

9) 同步马达设计选型 依据技术要求,产品设计经验及技术 延续性, 同步马达选用 CASAPPA-PLD 10/6.3系列。

Polaris

GENERAL DATA

PLD 10

Туре	Displacement	11.000	outlet sure	Max. outlet	Spi	eed	Flow per section	
	-	p ₁ p ₂		sections (1)	min.	max.	min.	max.
	cm³/rev	bar		bar	min ⁻¹		I/min	
PLD 10•2	2	250	280	200	1250	4200	2,65	8,9
PLD 10•3,15	3,1	250	280	200	1205	3990	3,99	13,2
PLD 10•4	4	250	280	200	1175	3840	4,98	16,2
PLD 10•5	4,9	250	280	200	1140	3680	6,04	19,5
PLD 10•6,3	6,2	250	280	200	1100	3500	7,29	23,2

10) 选型计算

1. 油缸推力计算 根据油缸参数计算油缸推力 油缸推力:

$$F = \frac{P * [3.14 * (d1/2)^2]}{10000}$$

式中:

F——油缸推力KN;

P——工作压力10/20MPa;

d₁——油缸缸径 mm;

数值代入公式计算得出:

举升油缸推力: $F=20*[3.14*(120/2)^2]/1000\approx22.6T$ 撑腿油缸推力: $F=10*[3.14*(120/2)^2]/1000\approx11.3T$ 支撑油缸推力: $F=10*[3.14*(120/2)^2]/1000\approx11.3T$ 横展油缸推力: $F=10*[3.14*(63/2)^2]/1000\approx3.1T$ 抱箍油缸推力: $F=10*[3.14*(50/2)^2]/1000\approx1.9T$ 插销油缸推力: $F=10*[3.14*(50/2)^2]/1000\approx1.9T$

2. 油缸拉力计算

根据油缸参数计算油缸拉力

油缸拉力:

$$F = \frac{P * [3.14 * (d1 / 2^2 - d2 / 2^2)]}{10000}$$

式中:

F——油缸拉力KN;

P——工作压力10/20MPa;

d₁——油缸缸径 mm;

 d_2 ——油缸杆径 mm;

数值代入公式计算得出:

举升油缸拉力: F=20*[3.14*(120/2²-90/2²)]/1000≈9.8T

撑腿油缸拉力: F=10*[3.14*(120/22-100/22)]/1000≈3.4T

支撑油缸拉力: F=10*[3.14*(120/2²-100/2²)]/1000≈3.4T

横展油缸拉力: F=20*[3.14*(63/2²-32/2²)]/1000≈4.6T

抱箍油缸拉力: F=20*[3.14*(50/2²-32/2²)]/1000≈2.2T

插销油缸拉力: F=20*[3.14*(50/2²-25/2²)]/1000≈2.9T

■ 2.2机械部分

3. 油缸流量计算

根据油缸参数计算油缸拉力油缸流量:

式中:

$$Q = \frac{L}{t}$$

Q——油缸所需流量 L/min;

L——活塞腔总容积dm³;

T——系统要求时间 min

数值代入公式计算得出:

举升油缸流量: Q=(19*2)*60/180=12.7 L/min

撑腿油缸流量: Q=(17*4)*60/180=22.7 L/min

支撑油缸流量: Q=(2.3*2)*60/20=13.8 L/min

横展油缸流量: Q=(2.5*4)*60/30=20 L/min

抱箍油缸流量: Q=(0.4*4)*60/10=9.6 L/min

插销油缸流量Q=(0.2*2)*60/5=4.8 L/min

4. 液压泵排量计算

根据系统运行最大流量及电机转速计算液压泵排量,系统各机构运行时流量相差较大,设计选用双联泵。

液压泵排量: p= Q/n

式中:

p——液压泵排量cm³/rev;

Q——系统需要流量L/min;

n——电机转速: 1500r/min:

数值代入公式计算得出:

举升油缸运行时: p=12.7*1000/1500~8.5 cm³/rev

撑腿有功运行时: p=22.7*1000/1500≈15.1 cm³/rev

依据以上排量计算,考虑液压泵的工作效率,确定选用 10+6排量双联高压齿轮泵。

5. 电机功率计算

依据选定的液压泵排量及系统工作压力计算电机功率。

电机功率: P=(p*Q)/60

式中:

P一系统功率KW;

Q一系统流量15/24 L/min;

p一额定工作压力20/10MPa;

双泵低压功率计算:

 $P = (10*24)/60 \approx 4KW$

单泵高压功率计算:

 $P=(20*15)/60\approx 5KW$

考虑到系统功率冗余,低温及高海拔工作,选用电机功率7.5KW,电机转速1500rpm,电压380V 50Hz。

2.3保护部分

结构保护

整套液压系统关系:

非必要液压连接软管以外, 所有液压系统管线均采用预埋工艺。

主要设备保护方式:

电抗器与分压一体化设计,所有连接线均通过预埋管线连接;电源输出入线路与户外配电柜连接,使用时,外接线路只需连接户外配电柜与设备连接后,可进入试验